A mixed multiscale finite element method for elliptic problems with oscillating coefficients

نویسندگان

  • Zhiming Chen
  • Thomas Y. Hou
چکیده

The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampling technique for solving second order elliptic equations with rapidly oscillating coefficients. The multiscale finite element bases are constructed by locally solving Neumann boundary value problems. We provide a detailed convergence analysis of the method under the assumption that the oscillating coefficients are locally periodic. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain the asymptotic structure of the solutions. Numerical experiments are carried out for flow transport in a porous medium with a random log-normal relative permeability to demonstrate the efficiency and accuracy of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Multiscale Finite Element Method for Elliptic Problems

In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...

متن کامل

A Multiscale Finite Element Method for Numerical Homogenization

This paper is concerned with a multiscale finite element method for numerically solving second order scalar elliptic boundary value problems with highly oscillating coefficients. In the spirit of previous other works, our method is based on the coupling of a coarse global mesh and of a fine local mesh, the latter one being used for computing independently an adapted finite element basis for the...

متن کامل

Superconvergence Analysis of a Multiscale Finite Element Method for Elliptic Problems with Rapidly Oscillating Coefficients

A new multiscale finite element method is presented for solving the elliptic equations with rapidly oscillating coefficients. The proposed method is based on asymptotic analysis and careful numerical treatments for the boundary corrector terms by virtue of the recovery technique. Under the assumption that the oscillating coefficient is periodic, some superconvergence results are derived, which ...

متن کامل

Reduced Basis Multiscale Finite Element Methods for Elliptic Problems

JAN S. HESTHAVEN ∗, SHUN ZHANG † , AND XUEYU ZHU ‡ Abstract. In this paper, we propose reduced basis multiscale finite element methods (RB-MsFEM) for elliptic problems with highly oscillating coefficients. The method is based on multiscale finite element methods with local test functions that encode the oscillatory behavior ([4, 14]). For uniform rectangular meshes, the local oscillating test f...

متن کامل

Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients

We propose a multiscale finite element method for solving second order elliptic equations with rapidly oscillating coefficients. The main purpose is to design a numerical method which is capable of correctly capturing the large scale components of the solution on a coarse grid without accurately resolving all the small scale features in the solution. This is accomplished by incorporating the lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003